WORKSHOP CALCULATION AND SCIENCE-UNIT 9: LEVERS AND SIMPLE MACHINES

SEMESTER - II

- 1. What is the ratio between the distances moved by the effort to the distance moved by the road?
 - a) Mechanical advantage b) velocity ratio c)efficiency d) fulcrum Ans: velocity ratio
- 2. What is the ratio of mechanical advantage to the velocity ratio of a simple machine?
 - a) Load b) effort c) efficiency d) power Ans: efficiency
- 3. What is the mechanical advantage, if a load of 1000kg is lifted by a simple machine and effort applied is 250kg?

a) 6 b) 8 c) 3 **Ans**: Mechanical advantage $= \frac{LOAD(W)}{EFFORT(P)} = \frac{1000}{250} = 4$

4. What is the velocity ratio of a wheel and axle if the radii of wheel and axle are 375 mm and 75 mm respectively?

d) 4

a) 3 b) 4 c) 5 d) 6 **Ans**: In wheel and axle, the effort is applied through wheel, and the load acts through axle Velocity Ratio = $\frac{Distance moved by Effort}{Distance moved by Load} = \frac{dp}{dw} = \frac{375}{75} = 5$

5. What is the velocity ratio of a simple machine of a mass 120kg is lifted to a height of 5 metres by a force of 60kg moving 15 metre. Calculate velocity ratio?

a) 1 b) 2 c) 3 d) 4 Ans: Velocity Ratio = $\frac{Distance moved by Effort}{Distance moved by Load} = \frac{dp}{dw} = \frac{15}{5} = 3$

6. What is the efficiency of a simple screw jack having velocity ratio is 314.2 and mechanical advantage is 220?

a) 60% b) 65% c) 70% d) 75% Ans: Efficiency $= \frac{Mechanica Advantage}{Velocity Ratio} \times 100\%$ $= \frac{220}{314.2} \times 100\% = 70\%$

- 7. How much load is lifted if an effort of 25 kg is applied to a simple machine having velocity ratio of 4 and efficiency 75%? *
 - a) 65 kg | 65 kg b) 70 kg | 70 kg c) 75 kg | 75 kg d)80 kg | 80 kg

Ans: Efficiency
$$\eta = \frac{Mechanical Advantage}{Velociry Ratio} \times 100\%$$

Mechanical Advantage $= \eta \times VR$
 $= \frac{75}{100} \times 4 = 3$
Also Mechanical Advantage $= \frac{W}{P}$;
 $W = P \times MA = 3 \times 25 = 75kg$

8. What is the name of fixed or supporting point of a lever? *
a) mechanical advantage b) fulcrum c) effort d) load
Ans: fulcrum

WORKSHOP CALCULATION AND SCIENCE-UNIT 9: LEVERS AND SIMPLE MACHINES

9.	What effort required to lift a load of 150 kg in a wheel and axle, if the velocity ratio is 2.5 and the efficiency of the machine is 75%? *					
	a) 70 kg b) 80		kg c) 90	kg	d) 100 kg	
	Ans:	Efficiency η	= <u>Mechanical Advantag</u> Velociry Ratio	^{<i>e</i>} x 100%		
	Mechanical Advantage = η x VR					
	Also Mechani	cal Advantage P	$= \frac{75}{100} \times 2.5 = 1.875$ $= \frac{W}{P};$ $= \frac{W}{MA} = \frac{150}{1.875} = 80 \text{kg}$			
10.	 10. What is the distance of the load from the fulcrum called? * a) effort arm b) load arm c) lower arm d) effort Ans: load arm 					
11.	Which is exar a) wheel bar Ans: pair of	nple for first or row scissors	der lever? * b) pair of scissors	c) fi	re tongs	d) lime squeezer
12.	Which is exar a) common b Ans: bottle o	nple for secono palance opener	d order lever? b) a pair of scissors	s c) b	ottle opener	d) human forearm
13.	. Which is example for third order lever? * a) common balance b) forceps Ans: forceps			c) a pair of scissors		d) lime squeezer
14.	 a) curved lever b) 1st order lever Ans: curved lever 			c) 2nd orde	er lever	d) 3rd order lever
15. Which order lever is claw hammer? *						

a) 1st order lever b) 2nd order lever c) 3rd order lever d) curved lever Ans: 1st order lever

WORKSHOP CALCULATION AND SCIENCE-UNIT 9: LEVERS AND SIMPLE MACHINES

16. In the figure given below in bell cranked lever AFB, on perpendicular AF the force P is 40 kg. Weight W is on perpendicular FB. Find the measure of W?

- 17. Calculate efficiency of the machine, if the effort applied is 250 kg and a load of 1000 kg is lifted by a simple machine having a velocity ratio 5. *
 - a) 50% b) 75% c) 80% d) 100% Mechanical Advantage $= \frac{W}{P} = \frac{1000}{250} = 4$ Efficiency $\eta = \frac{Mechanical Advantage}{Velociry Ratio} \times 100\% = \frac{4}{5} \times 100\% = 80\%$ Ans:

6

18. Calculate the applied force if a Load of 400 kg is lifted by a machine having and efficiency of 72% and velocity ratio = 6?

a) 100 kg b) 95.52 kg c) 94 kg d) 92.59kg
Ans: Efficiency
$$\eta = \frac{Mechanical Advantage}{Velociry Ratio} \times 100\%$$

 $72 = \frac{Mechanical Advantage}{Velociry Ratio} \times 100\%$

Mechanical Advantage = 4.32

MA
$$= \frac{W}{P};$$

4.32 $= \frac{400}{P}$
P = **92.59 kg**